Oferta
74hc595 Registro De Desplazamiento Dip16 Itytarg Ver más grande

¡Disponible sólo en Internet!

74hc595 Registro De Desplazamiento Dip16 Itytarg

MLA910408347

Nuevo producto

Cod: GAW

Origen: China

Marca: Genérico

Marcado como: 74HC595/74HC595N / SN74HC545N

Más detalles

1884 artículos

compartir

$ 1.150,00 IVA Inc.

Descuentos por volumen

Cantidad Precio Usted ahorra
10 $ 1.035,00 Hasta $ 1.150,00
25 $ 1.012,00 Hasta $ 3.450,00
50 $ 977,50 Hasta $ 8.625,00

Más

Arduino: ampliar cantidad de salidas digitales con 74HC595

A veces un Arduino queda corto de pines, y se nos presenta la necesidad de ampliar la cantidad de salidas digitales. La manera más usual es con un registro de desplazamiento (Shift Register, en inglés), que convierte los datos en serie en salidas paralelas. Esto será de utilidad en aquellas placas como Arduino UNO, Nano, Micro, etc, que a veces resultan un poco limitados en este sentido.

El chip 74hc595 —para algunos un misterioso integrado de 16 patas que viene incluido en muchos kits de inicio para Arduino— tiene una ventaja esencial ante otros chips del mismo tipo: tiene un registro que mantiene el dato en los pines de salida sin variación mientras se desplazan los datos dentro del chip.


Adicionalmente, tiene la posibilidad de desconectar las salidas de este registro de los pines de salida del chip, por medio de la entrada de control OE (Ouput Enable = Habilitación de Salidas), dejándolos en un estado de alta impedancia, o tercer estado. No usaremos esta opción aquí, pero en futuros artículos veremos la importancia de esta posibilidad.

Al utilizar el circuito integrado 74HC595, ocupamos solamente 3 salidas digitales en la placa Arduino, pero obtenemos 8 salidas digitales adicionales. Este 3 x 8 en pines no parece una gran mejora (ganamos 5 salidas), pero si se agregan más chips, la ampliación puede llegar a ser importante.


Poniendo más chips conectados en serie se pueden obtener otras 8 salidas más por cada chip agregado, y la cantidad de pines ocupados en el Arduino sigue igual: solamente tres. Con tres chips tendremos 24 salidas, con 8 chips tendremos 64, y con 32 chips tendremos una ampliación de 256 nuevas salidas.

Para calcular la cantidad de salidas que obtendremos, hay que multiplicar la cantidad de chips por 8.

En teoría, se puede poner una cantidad indefinida de chips en serie y obtener centenares de salidas adicionales. Sólo se debe tener en cuenta que los datos no se desplazan instantáneamente, debido a los tiempos de programa. Supongamos una cantidad de 32 bytes a poner en las salidas de 32 chips —256 bits—. Colocar todos esos datos en los registros de salida de 32 chips 74HC595 implica un tiempo que puede ser sustancial y prohibitivo para algunas aplicaciones que requieren salidas con variaciones rápidas, sin que importe si se cambia un único bit en las salidas, o los 256 bits juntos. Para aplicaciones sin tiempos críticos, como encendido de leds, artefactos a través de relés, displays de segmentos o control de motores, no existe ningún problema de tiempos.

La mayoría de los chips de registro de desplazamiento pueden manejarse elevadas frecuencias en MHz para el desplazamiento, todos superan la máxima velocidad de envío de datos en serie de un Atmega328P, ya que para hacerlo debemos usar una secuencia de instrucciones de programa. Algunas hojas de datos nos muestran frecuencias de desplazamiento de 100 MHz, 36 MHz, y similares. Un Arduino estándar, con cristal de 16 MHz, y aún más teniendo que usar una secuencia de instrucciones para enviar cada bit, no superará nunca esas frecuencias para el desplazamiento de los datos. De modo que no se nos presentarán problemas de límite de velocidad al usar estos chips.

Datasheet de referencia

14 productos más en la misma categoría: